C1 Approximation of Vector Fields Based on the Renormalization Group Method

نویسنده

  • Hayato Chiba
چکیده

The renormalization group (RG) method for differential equations is one of the perturbation methods for obtaining solutions which approximate exact solutions for a long time interval. This article shows that, for a differential equation associated with a given vector field on a manifold, a family of approximate solutions obtained by the RG method defines a vector field which is close to the original vector field in the C1 topology under appropriate assumptions. Furthermore, some topological properties of the original vector field, such as the existence of a normally hyperbolic invariant manifold and its stability are shown to be inherited from those of the RG equation. This fact is applied to the bifurcation theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Vector Fields on the RG Method and its Application to the Synchronization

The renormalization group (RG) method for differential equations is one of the perturbation technique proposed by Chen, Goldenfeld, and Oono [1,2]. The RG method unifies traditional singular perturbation methods, such as the multi-scaling method, the boundary layer theory , the averaging method, the normal form theory, the center manifold theory, and the geometric singular perturbation. Chiba [...

متن کامل

Extension and Unification of Singular Perturbation Methods for ODEs Based on the Renormalization Group Method

The renormalization group (RG) method is one of the singular perturbation methods which is used in search for asymptotic behavior of solutions of differential equations. In this article, time-independent vector fields and time (almost) periodic vector fields are considered. Theorems on error estimates for approximate solutions, existence of approximate invariant manifolds and their stability, i...

متن کامل

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

Some geometrical properties of the oscillator group

‎We consider the oscillator group equipped with‎ ‎a biinvariant Lorentzian metric‎. ‎Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional‎ ‎restricted to vector fields‎. ‎Left-invariant vector fields defining harmonic maps are...

متن کامل

Monte Carlo and renormalization-group effective potentials in scalar field theories.

We study constraint effective potentials for various strongly interacting φ theories. Renormalization group (RG) equations for these quantities are discussed and a heuristic development of a commonly used RG approximation is presented which stresses the relationships among the loop expansion, the Schwinger-Dyson method and the renormalization group approach. We extend the standard RG treatment ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2008